## ANSWERS \& MARK SCHEMES

## QUESTIONSHEET 1

| FEATURE | MITOSIS | MEIOSIS |
| :--- | :---: | :---: |
| Involves two successive nuclear divisions | $x$ | $\checkmark$ |
| Does not occur in a haploid cell | $x$ | $\checkmark$ |
| Involves synapsis forming bivalents | $x$ | $\checkmark$ |
| Involves chiasmata formation | $x$ | $\checkmark$ |
| Leads to random assortment of chromatids | $x$ | $\checkmark$ |
| Leads to random assortment of chromosomes | $x$ | $\checkmark$ |
| Occurs during gamete formation in a mammal | $\checkmark$ | $\checkmark$ |
| Daughter nuclei have identical genetic content | $\checkmark$ | $x$ |
| DNA replicates before cell division commences | $\checkmark$ | $\checkmark$ |
| Involves two chromosomal replications | $x$ | $x$ |

## QUESTIONSHEET 2

1. random assortment of chromosomes in Anaphase I; produces new combinations of chromosomes and the genes/alleles they carry from each homologous pair; resulting nuclei thus have new combinations of the genes/alleles present;
2. random assortment of chromatids during Anaphase II; produces new combinations of alleles in the regrouped chromatids; resulting nuclei thus have new combinations of the alleles present;
3. chiasmata form between chromatids of different but homologous chromosomes; thus moving alleles from chromosome to chromosome into new combinations; thus modifying the linkage groups present;

## QUESTIONSHEET 3

(a) $\mathrm{B} \mathrm{A} \mathrm{C} ; \mathrm{A}=$ anaphase, $\mathrm{B}=$ prophase, $\mathrm{C}=$ telophase;
(b) Structure:
chromosomes would be replicated into chromatids;
chiasmata would be showing between chromatids of homologous chromosomes;

Arrangement:
chromosomes would be arranged into homologous pairs; with centromeres attached to the opposite spindles;
(c) (i) 2 ;
(ii) 4 ;
(iii) 6;

## QUESTIONSHEET 4

(a) in animals consists of a furrowing/tucking in of the cell membrane; eventually separating two nuclei by constriction (of cytoplasm); in plants a cell plate/ middle lamella is synthesised between nuclei; calcium /magnesium pectate/cellulose secreted to form new cell wall;
(b) centromere in chromosome holds chromatids together;
provides attachment to spindle during cell division;
centriole is made of microtubules (in animal cells);
forms spindle during cell division;
(c) synapsis is pairing of homologous chromosomes;
in zygotene/early prophase of meiosis;
chiasmata formation occurs in diakinesis/late prophase of meiosis;
is cross over of genetic material between chromatids of homologous chromosomes;

## QUESTIONSHEET 5

(a) DNA double helix unwinds to give single stranded (primer) DNA;
upon which the complementary strand is assembled;
from surrounding nucleotides;
forming double stranded daughter DNA;
thus each new DNA has one strand from parent DNA and one new strand;
(b) genes consist of alleles at corresponding loci on homologous chromosomes;
all alleles on a particular chromosome/chromatid must be carried together during inheritance;
chiasmata will swap some of these alleles with those on the sister chromosome;
thus the allelic make up of the linkage groups is modified;
(c) meiosis reduces two sets of chromosomes to one set/diploid state to haploid state;
fertilisation joins two haploid nuclei together restoring the diploid state;

## QUESTIONSHEET 6

(a) $\mathrm{A}=$ chromatid; $\mathrm{B}=$ spindle fibre; $\mathrm{C}=$ centriole; $\mathrm{D}=$ centromere; $\mathrm{E}=$ chiasma;
(b) (i) mitosis;
(ii) metaphase;
(iii) meiosis;
(iv) early anaphase I;
(c) cell 2 ;
it is purely random which chromosomes of the homologous pairs go to a particular pole; thus groups of alleles/linkage groups are mixed up in random fashion; giving continuous variation;
(d) will mix up alleles between linkage groups into new combinations; giving (more) variation;

## QUESTIONSHEET 7

(a) (i) two homologous chromosomes that have paired closely together;
(ii) meiosis; early prophase I/zygotene;
(iii) synapsis;
(b) $\mathrm{A}=$ centromere; $\mathrm{B}=$ chromatid; $\mathrm{C}=$ chromosome; $\mathrm{D}=$ chiasma;
(c) (early) anaphase;
centromeres have moved apart;
but chiasma is still intact/not yet completed;

## TOTAL 11

## QUESTIONSHEET 8

(a) (i) where there are clear-cut alternatives of a given trait; with no intermediate forms; tall and short peas/round and wrinkled peas/pigmentation and albinoism/any other valid examples;; (any two examples)
(ii) where a given trait has many variations;
with only minor differences between them; height in humans/intelligence/yield in crop plants/any other valid examples;;(any two examples)
(b) genes contain two or more different forms called alleles;
at corresponding loci on homologous chromosomes;
thus any individual will have two alleles of the gene;
if the gene only has two alleles the number of characters available for expression will only be two (thus giving discontinuous variation);
if a gene has many alleles (polygene) then many variations of the character can occur;
individual can inherit any two of the variety of alleles (thus continual variation occurs);

## QUESTIONSHEET 9

(a) random assortment of chromosomes (at anaphase I);
random assortment of chromatids (at anaphase II);
chiasmata formation (in late prophase I/diakinesis);
(b) alleles mixed together from two individuals;
these alleles may be different forms of the gene thus causing different effects;
(c) most genes are polygenes/contain hundreds of different alleles;
these have arisen by continued mutation (over millions of years);
alleles from different parts of the gene pool/population are likely to have different effects (in the phenotype);
(d) (i) shell size/height/width;
(ii) D ;
lines/ridges on the shell;

## ANSWERS \& MARK SCHEMES

## QUESTIONSHEET 10

(a)


6 chromosomes in a row on equator; same morphology of chromosomes as in metaphase 1 of meiosis diagram; quality and clarity of diagram; (chromosomes can be in any order but must not be paired or show chiasmata)
(b)


Any two of the labels (reject chiasmata) - 2 marks;; chromosomes correctly segregating to poles (in correct order and shape); spindle and completed chiasmata correctly shown; quality and clarity of diagram; (clean, well drawn, joined up lines/ no shading /reasonable size)

## QUESTIONSHEET 11

(a) mitosis maintains the same chromosome number (reject diploid state since mitosis can take place as haploid to haploid) whereas meiosis halves the chromosome number/reduces the diploid state to the haploid state; mitosis maintains the same genotype whereas meiosis introduces genetic variation;
(b) random assortment of chromosomes at Anaphase 1;
random assortment of chromatids at Anaphase 2 ;
formation of chiasmata;
(c) best answered by a genetic diagram, eg.

| P | Aa $\times$ |
| :---: | :---: |
| gametes | (A)(a) (A)(a) |
| F | AA Aa ${ }^{\text {A }}$ |

alleles A and a in each parent; (any letters acceptable)
equal proportions of each gamete;
A is dominant so 3 dominants to 1 recessive;
TOTAL 8

## QUESTIONSHEET 12

| Feature | Mitosis | Meiosis 1 | Meiosis 2 |
| :--- | :---: | :---: | :---: |
| Occurs during gametogenesis | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| DNA replicates before prophase | $\checkmark$ | $\checkmark$ | $\times$ |
| Bivalents form during prophase | $\times$ | $\checkmark$ | $\times$ |
| Chiasmata are formed | $\times$ | $\checkmark$ | $\times$ |
| Chromatids randomly assort during anaphase | $\times$ | $\times$ | $\sqrt{ }$ |

(1 mark per correct line)

